Domain-Specific Image Captioning

نویسندگان

  • Rebecca Mason
  • Eugene Charniak
چکیده

We present a data-driven framework for image caption generation which incorporates visual and textual features with varying degrees of spatial structure. We propose the task of domain-specific image captioning, where many relevant visual details cannot be captured by off-the-shelf general-domain entity detectors. We extract previously-written descriptions from a database and adapt them to new query images, using a joint visual and textual bag-of-words model to determine the correctness of individual words. We implement our model using a large, unlabeled dataset of women’s shoes images and natural language descriptions (Berg et al., 2010). Using both automatic and human evaluations, we show that our captioning method effectively deletes inaccurate words from extracted captions while maintaining a high level of detail in the generated output.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Representations and New Domains in Neural Image Captioning

We examine the possibility that recent promising results in automatic caption generation are due primarily to language models. By varying image representation quality produced by a convolutional neural network, we find that a state-of-theart neural captioning algorithm is able to produce quality captions even when provided with surprisingly poor image representations. We replicate this result i...

متن کامل

Guided Open Vocabulary Image Captioning with Constrained Beam Search

Existing image captioning models do not generalize well to out-of-domain images containing novel scenes or objects. This limitation severely hinders the use of these models in real world applications dealing with images in the wild. We address this problem using a flexible approach that enables existing deep captioning architectures to take advantage of image taggers at test time, without re-tr...

متن کامل

Changes on the Horizon for the Multimedia Community

The Impact of Deep Learning The development of AI algorithms, represented by deep learning, has bolstered multimedia research. In particular, deep learning has led to a multimodality-based algorithm framework, enabling the effective fusion and use of cross-domain data. Take image and video captioning, for example. A couple of years ago, tagging was the only way to describe images and videos. Bu...

متن کامل

Neural Baby Talk

We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sent...

متن کامل

Paying More Attention to Saliency: Image Captioning with Saliency and Context Attention

Image captioning has been recently gaining a lot of attention thanks to the impressive achievements shown by deep captioning architectures, which combine Convolutional Neural Networks to extract image representations, and Recurrent Neural Networks to generate the corresponding captions. At the same time, a significant research effort has been dedicated to the development of saliency prediction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014